Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Immunol ; 13: 1066176, 2022.
Article in English | MEDLINE | ID: covidwho-2198907

ABSTRACT

Introduction: SARS-CoV-2 infection results in varying disease severity, ranging from asymptomatic infection to severe illness. A detailed understanding of the immune response to SARS-CoV-2 is critical to unravel the causative factors underlying differences in disease severity and to develop optimal vaccines against new SARS-CoV-2 variants. Methods: We combined single-cell RNA and T cell receptor sequencing with CITE-seq antibodies to characterize the CD8+ T cell response to SARS-CoV-2 infection at high resolution and compared responses between mild and severe COVID-19. Results: We observed increased CD8+ T cell exhaustion in severe SARS-CoV-2 infection and identified a population of NK-like, terminally differentiated CD8+ effector T cells characterized by expression of FCGR3A (encoding CD16). Further characterization of NK-like CD8+ T cells revealed heterogeneity among CD16+ NK-like CD8+ T cells and profound differences in cytotoxicity, exhaustion, and NK-like differentiation between mild and severe disease conditions. Discussion: We propose a model in which differences in the surrounding inflammatory milieu lead to crucial differences in NK-like differentiation of CD8+ effector T cells, ultimately resulting in the appearance of NK-like CD8+ T cell populations of different functionality and pathogenicity. Our in-depth characterization of the CD8+ T cell-mediated response to SARS-CoV-2 infection provides a basis for further investigation of the importance of NK-like CD8+ T cells in COVID-19 severity.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , SARS-CoV-2 , Antibodies
2.
Blood Cells Mol Dis ; 97: 102678, 2022 11.
Article in English | MEDLINE | ID: covidwho-1944311

ABSTRACT

The T cell-mediated immune responses associated with asymptomatic infection (AS) of SARS-CoV-2 remain largely unknown. The diversity of T-cell receptor (TCR) repertoire is essential for generating effective immunity against viral infections in T cell response. Here, we performed the single-cell TCR sequencing of the PBMC samples from five AS subjects, 33 symptomatic COVID-19 patients and eleven healthy controls to investigate the size and the diversity of TCR repertoire. We subsequently analyzed the TCR repertoire diversity, the V and J gene segment deference, and the dominant combination of αß VJ gene pairing among these three study groups. Notably, we revealed significant TCR preference in the AS group, including the skewed usage of TRAV1-2-J33-TRBV6-4-J2-2 and TRAV1-2-J33-TRBV6-1-J2-3. Our findings may shed new light on understanding the immunopathogenesis of COVID-19 and help identify optimal TCRs for development of novel therapeutic strategies against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , Leukocytes, Mononuclear , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2 , T-Lymphocytes
3.
Front Immunol ; 12: 733539, 2021.
Article in English | MEDLINE | ID: covidwho-1572288

ABSTRACT

The response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely impacted by the level of virus exposure and status of the host immunity. The nature of protection shown by direct asymptomatic contacts of coronavirus disease 2019 (COVID-19)-positive patients is quite intriguing. In this study, we have characterized the antibody titer, SARS-CoV-2 surrogate virus neutralization, cytokine levels, single-cell T-cell receptor (TCR), and B-cell receptor (BCR) profiling in asymptomatic direct contacts, infected cases, and controls. We observed significant increase in antibodies with neutralizing amplitude in asymptomatic contacts along with cytokines such as Eotaxin, granulocyte-colony stimulating factor (G-CSF), interleukin 7 (IL-7), migration inhibitory factor (MIF), and macrophage inflammatory protein-1α (MIP-1α). Upon single-cell RNA (scRNA) sequencing, we explored the dynamics of the adaptive immune response in few representative asymptomatic close contacts and COVID-19-infected patients. We reported direct asymptomatic contacts to have decreased CD4+ naive T cells with concomitant increase in CD4+ memory and CD8+ Temra cells along with expanded clonotypes compared to infected patients. Noticeable proportions of class switched memory B cells were also observed in them. Overall, these findings gave an insight into the nature of protection in asymptomatic contacts.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Genomics/methods , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/genetics , Adult , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Female , Gene Expression Profiling/methods , Humans , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Memory B Cells/virology , Middle Aged , SARS-CoV-2/physiology , Sequence Analysis, RNA/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Young Adult
4.
Genomics ; 113(2): 456-462, 2021 03.
Article in English | MEDLINE | ID: covidwho-989433

ABSTRACT

T-cell receptor (TCR) is crucial in T cell-mediated virus clearance. To date, TCR bias has been observed in various diseases. However, studies on the TCR repertoire of COVID-19 patients are lacking. Here, we used single-cell V(D)J sequencing to conduct comparative analyses of TCR repertoire between 12 COVID-19 patients and 6 healthy controls, as well as other virus-infected samples. We observed distinct T cell clonal expansion in COVID-19. Further analysis of VJ gene combination revealed 6 VJ pairs significantly increased, while 139 pairs significantly decreased in COVID-19 patients. When considering the VJ combination of α and ß chains at the same time, the combination with the highest frequency on COVID-19 was TRAV12-2-J27-TRBV7-9-J2-3. Besides, preferential usage of V and J gene segments was also observed in samples infected by different viruses. Our study provides novel insights on TCR in COVID-19, which contribute to our understanding of the immune response induced by SARS-CoV-2.


Subject(s)
COVID-19/genetics , High-Throughput Nucleotide Sequencing , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2 , Single-Cell Analysis , COVID-19/immunology , Female , Humans , Male , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL